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Introduction Context

• RANS (Reynolds-Averaged Navier-Stokes) simulations for engineering,
design and optimisation
+ Simplicity, low cost, robustness
− Low fidelity

• Mostly Linear Eddy Viscosity Models (LEVM): ”Boussinesq” analogy
• Non-linear corrections in the baseline LEVM:

1 Work well for a limited set of flow cases
2 Based on local equilibrium assumptions + some empiricism
3 Complex coefficient expressions, numerical stiffness
4 No information about uncertainties

• Choice of a ’best’ turbulence model often based on ’expert judgement’
• Recent trends:

• Increasing availability of high-Fidelity databases
• Development of ML-augmented turbulence models [1][2] [3]

[1]Duraisamy, K., Iaccarino, G., and Xiao, H. (2019). Annual Review of Fluid Mechanics, 51:357–377
[2]Xiao, H. and Cinnella, P. (2019). Progress in Aerospace Sciences, 108:1–31
[3]Duraisamy, K. (2021). Physical Review Fluids, 6:050504
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Introduction Our contribution

GOAL:
→ Learn customized non linear eddy viscosity models for selected flow

classes:
• Stochastic ( equipped with measure of uncertainty)
• Physically interpretable
• Sparse (less complex, more robust, less likely to overfit)

→ Automatically combine these customized models to yield predictions
better than LEVM throughout the flows of the Collaborative Testing
Challenge
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Learning of stochastic SBL-EARSM closures Reynolds stress representation

Algorithm overview

High-fidelity data:U, k, τij, ωfrozen
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Learning of stochastic SBL-EARSM closures Sparse Bayesian Learning (SBL)

SBL algorithm a

aTipping, M. E. (2001). Journal of machine learning research, 1(Jun):211–244

t(x;w) = Φ(x)w + ϵ
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i=1 N (0, 1
αi
)

p(α) =
∏M

i=1
λ
2 exp(− λ

2αi
)

p(σ2) uninformative

p(w|t, α, σ2

??
) ∼ N (µ,Σ)

LII(α,σ2) = log p(t|α, σ2)

Bayes rule
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Learning of stochastic SBL-EARSM closures Sparse Bayesian Learning (SBL)

SBL - Uncertainty Quantification
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Learning of stochastic SBL-EARSM closures Spatial Model Aggregation (X-MA)

Model Aggregation (MA)

Let us consider K SBL-EARSM models, learned in different environments.
We aggregate their individual solutions dk to produce robust predictions of
new flows
• Mixture of Experts: Exponentially Weighted Average (EWA) of models

wk(δ
k; δ̄;σw) =

gk(δ
k; δ̄;σw)∑K

l=1 gl(δl; δ̄;σw)
(1)

where:
• δ̄ is a vector of high-fidelity data
• δk is a vector of the kth individual model predictions for δ̄ (Nota: δk ̸= dk!)
• σw is a hyperparameter
• gm is a cost function of the form

gk(δ
k; δ̄;σw) = exp

(
−1

2
(δk − δ̄)T .(δk − δ̄)

σ2
w

)
(2)

• The aggregated prediction of quantity d writes:

dMA =

K∑
k=1

wkdk (3)
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Learning of stochastic SBL-EARSM closures Spatial Model Aggregation (X-MA)

X-MA

MA: constant weights do not account for ”regional” model behavior
X-MA: ’local’ and ’physics-aware’ aggregation:

⃗η(x) = (η1(x), ..., η10(x))︸ ︷︷ ︸
local flow features

CART−−−→
W

(
w1(δ

1(x); δ̄(x);σw), ...,wK(δ
K(x); δ̄(x);σw))

)︸ ︷︷ ︸
local models weights

(4)

dX−MA(x) =
K∑

k=1

Wk( ⃗η(x);σw)dk(x) (5)

Figure 1: Set of features[6]

[6]Ling, J. and Templeton, J. (2015). Physics of Fluids, 27(8):085103
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Results Training flow cases

Training Data

Ref case Data
D1 ZPG-TBL DNS of turbulent boundary layer, 670 ≤ Reθ ≤ 4060[7]

D2 FDC DNS of turbulent channel flow, 180 ≤ Reτ ≤ 590[8]

D3 ANSJ PIV of near sonic axisymmetric jet [9]

D4 APG LES of adverse pressure-gradient TBL [10]

Reθ ≤ 4000, β = 4, 5 different pressure gradients
D5 SEP LES of Periodic Hills at Re=10595 [11]

DNS of converging-diverging channel at Re=13600 [12]

LES of curved backward facing step at Re = 13700 [13]

D6 N4412 LES of NACA4412 at α = 5, Rec = 105, 2.105, 4.105, 106 [14]

• SBL-EARSM models are infered using Reynolds stress data
• The aggregation of models is using streamwise velocity data

[7]Schlatter, P., Orlu, R., Li, Q., Brethouwer, G., Johansson, A. V., Alfredsson, P. H., and Henningson, D. S. (2011). In Seventh International Symposium on
Turbulence and Shear Flow Phenomena. Begel House Inc

[8]Moser, R. D., Kim, J., and Mansour, N. N. (1999). Physics of fluids, 11(4):943–945
[9]Bridges, J. and Wernet, M. (2010). In 16th AIAA/CEAS aeroacoustics conference, page 3751

[10]Bobke, A., Vinuesa, R., Örlü, R., and Schlatter, P. (2017). Journal of Fluid Mechanics, 820:667–692
[11]Breuer, M., Peller, N., Rapp, C., and Manhart, M. (2009). Computers & Fluids, 38(2):433–457
[12]Laval, J.-P. and Marquillie, M. (2011). In Progress in wall turbulence: understanding and modeling, pages 203–209. Springer
[13]Bentaleb, Y., Lardeau, S., and Leschziner, M. A. (2012). Journal of Turbulence, (13):N4
[14]Vinuesa, R., Negi, P. S., Atzori, M., Hanifi, A., Henningson, D. S., and Schlatter, P. (2018). International Journal of Heat and Fluid Flow, 72:86–99
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Results Collaborative Testing Challenge

Case 2DZP: zero pressure boundary layer

Figure 2: u+ vs. log(y+) Figure 3: Cf vs. x
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Results Collaborative Testing Challenge

Case 2DFDC: Fully-developed channel flow

Figure 4: u+ vs. log(y+)
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Results Collaborative Testing Challenge

Case 2DWMH: Wall-Mounted Hump

Figure 5: Cp vs. x Figure 6: Cf vs. x
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Results Collaborative Testing Challenge

Case 2DWMH: Wall-Mounted Hump

Figure 7: Streamwise velocity U at different streamwise stations
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Results Collaborative Testing Challenge

Case 2DWMH: Wall-Mounted Hump

Figure 8: Reynolds shear stress τxy at different streamwise stations

Soufiane CHERROUD (DynFluid-ENSAM) X-MA of SBL-EARSM July 27, 2022 15 / 24



Results Collaborative Testing Challenge

Case ASJ: Axisymmetric Subsonic Jet

Figure 9: Streamwise velocity along symmetry axis
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Results Collaborative Testing Challenge

Case ASJ: Axisymmetric Subsonic Jet

Figure 10: Streamwise velocity U along symmetry axis
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Results Collaborative Testing Challenge

Case ASJ: Axisymmetric Subsonic Jet

Figure 11: Reynolds shear stress τxy at different stations along x
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Results Collaborative Testing Challenge

Case 2DN00: NACA 0012 Airfoil

Figure 12: CD vs. CL
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Results Collaborative Testing Challenge

Case 2DN00: NACA 0012 Airfoil

Figure 13: Cp vs. x (left) and Cf vs. x (right) at α = 10◦
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Results Collaborative Testing Challenge

Case 2DN00: NACA 0012 Airfoil

Figure 14: Cp vs. x (left) and Cf vs. x (right) at α = 15◦
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Results Collaborative Testing Challenge

Case 2DN00: NACA 0012 Airfoil

Figure 15: Cp vs. x (left) and Cf vs. x (right) at α = 17◦
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Results Collaborative Testing Challenge

Case 2DN00: NACA 0012 Airfoil

Figure 16: Cp vs. x (left) and Cf vs. x (right) at α = 18◦
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Results Collaborative Testing Challenge

Conclusions and perspectives

• We presented a Sparse Bayesian Learning (SBL) approach for
discovering non linear corrections of LEVM with stochastic model
parameters

• We explored a method for aggregating, in a ’local’ and ’physics-aware’
manner, predictions of SBL-EARSM models

• X-MA provides estimates of (parametric + model form) uncertainty

→ Future work:

• Derive customized SBL-EARSM for other flow classes
• Relax limitations intrinsic to Pope’s representation
• Improve model aggregation algorithm to avoid unphysical wiggles and to

return to baseline model for flow regions far apart the training sets
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SBL-EARSM models of training flow cases

Training set Model

(ZPG-TBL)



M(1)
b∆ = [(−0.264 ± 0.1263) + (2.61 ± 4.55)(I1 − I2)+

(−6.19 ± 12.3)(I2
1 − I2

2) + (4.89 ± 10.0)(I3
1 − I3

2)]T(1)

±0.1647
M(1)

bR = [(0.198 ± 0.0245)I2
1 + (−0.362 ± 0.0562)(I3

1 − I3
2)+

(3.25 ± 0.449)(I7
1 − I7

2) + (3.13 ± 0.589)I8
1+

+(−0.198 ± 0.449)I1I2]T(1) ± 0.00045

(FDC)


M(2)

b∆ = [(0.168 ± 0.0886)]T(1) ± 0.893
M(2)

bR = [(3.21 ± 0.361) + (−2.88 ± 1.24)(I3
1 − I3

2)+

(−0.176 ± 0.32)(I9
1 − I9

2)]T
(3) ± 0.00337)

(ANSJ)


M(3)

b∆ = [(0)]± 0.00863
M(3)

bR = [(−0.35 ± 0.0143)]T(1) + [(−38.476 ± 2.16)]T(3)

±0.00241

T(1) = 1
ωS,T(2) = 1

ω2 (SΩ− ΩS) and T(3) = 1
ω2

(
S2 − 1

3 Tr(S2)I
)
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SBL-EARSM models of training flow cases

Training set Model

(APG)


M(4)

b∆ = [(0.477 ± 0.259)]T(1) ± 0.000626
M(4)

bR = [(−0.12 ± 0.0206) + (0.918 ± 0.332)(I1 − I2)]T(1)

±0.0000176

(SEP)

{
M(5)

b∆ = [(0)]± 0.00669
M(5)

bR = [(0.382 ± 0.0184)]T(1) ± 0.0385

(N4412)


M(6)

b∆ = [(−0.39 ± 0.000214)]T(1) + [(7.00 ± 0.00169)]T(2)+

[(6.00 ± 0.038)]T(3) ± 0.000626
M(6)

bR = [(0)]± 0.00011

T(1) = 1
ωS,T(2) = 1

ω2 (SΩ− ΩS) and T(3) = 1
ω2

(
S2 − 1

3 Tr(S2)I
)
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Model Aggregation (MA) Ingredients

• Let:
• θ a random variable refering to the generic ’non-infered’ model coefficients
• DCalib a random variable refering to the high-fidelity training data set

• With the SBL framework, we have:

θ|DCalib
k ⇔ θSBL

k |DCalib
k ,Mk (6)

where:
• M a random variable refering to the infered form of the SBL correction
• θSBL a random variable referinf to the infered model coefficients under the

model form M
• We use high-fidelity velocity data to evaluate the relevance of the derived

models to each other:
• DEval high-fidelity velocity data used to calculate models’ weights
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Model Aggregation (MA) formulation

• We want to make predictions on an unseen quantity dt:

p(dt|DEval) =

K∑
k=1

p(dt,DCalib
k |DEval) (7)

=

K∑
k=1

∫
p(dt,DCalib

k , θ|DEval)dθ (8)

=

K∑
k=1

∫
p(dt, θ

SBL
k ,Mk,DCalib

k |DEval)dθSBL
k (9)

p(dt|DEval) =

K∑
k=1

p(Mk,DCalib
k |DEval)︸ ︷︷ ︸

model−probability

∫
p(dt|Mk,DCalib

k , θSBL
k )︸ ︷︷ ︸

likelihood

p(θSBL
k |Mk,DCalib

k )︸ ︷︷ ︸
posterior

dθSBL
k

(10)

• p(Mk,DCalib
k |DEval) can be calculated using Bayes’ theorem:

p(Mk,DCalib
k |DEval) =

p(DEval|Mk,DCalib
k )∑K

l=1 p(DEval|Ml,DCalib
l )

(11)
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Spatial Model Aggregation (X-MA)

Spatial Model Aggregation (X-MA)
• We want to make the probability of every model sensitive to local flow

features:
1 We train a CART to identify clusters in the flow and learn the weights of

every model using local flow features
2 Every cluster gives a convex combinaison of the models’ weights

⃗η(x) = (η1(x), ..., η10(x))
CART−−−→

w

(
p(M1,DCalib

1 |DEval(x)), ..., p(MK ,DCalib
K |DEval(x))

)
• The X-MA writes:

p(dt(x)|DEval) =

K∑
k=1

w( ⃗η(x))k

∫
p(dt|Mk,DCalib

k , θSBL
k )p(θSBL

k |Mk,DCalib
k )dθSBL

k

• We can proove that:

E(dt(x)|DEval) =

K∑
k=1

w( ⃗η(x))kE(dt|Mk,DCalib
k ) (12)

Var(dt(x)|DEval) =

K∑
k=1

w( ⃗η(x))kVar(dt|Mk,DCalib
k ) (13)
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Comments

Grid search

• We performed a preliminary grid search to study the effect of two
hyperparameters:

• The depth of the CART tree: mdepth
• The noise used to model the distribution of high-fidelity data around the

SBL-EARSM predictions and that is used to calculate the likelihoods: σCART

• The choice of the best hyperparameters depend on the velocity
predictions of the training set

• Results show that:
• σCART

optim ≃ 0.01
• 2 values of mdepthoptim are found:
• mdepthoptim ≃ 3 for optimal τxy predictions
• mdepthoptim ≃ 10 for all other Quantities of Interest

• A deeper and more precise grid search around these optimal value is
needed for an optimal final result
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